
EXCITATION OF WAVES OF INSTABILITY OF THE SECONDARY FLOW 

IN THE BOUNDARY LAYER ON A SWEPT WING 

A. V. Fedorov UDC 532.526.013 

For practically important cases of low-level background disturbances, the laminar-turbu- 
lent transition of the boundary layer is determined by the excitation and development of un- 
stable perturbations [i, 2]. As a rule, two types of instability develop on high-aspect-ratio 
swept wings: Tollmin-Schlichting waves (in the middle part of the wing profile); instability 
of the secondary flow (on the fore and aft parts of the profile, where the boundary layer 
is essentially three-dimensional). Characteristics of the development of both types of in- 
stability were examined in detail in [3-6]. The excitation of Tollmin-Schlichting waves in 
three-dimensional boundary layers was examined in [7, 8]. However, no attention has been 
given to study of the excitation of instability in secondary flows. There is also no experi- 
mental data on the mechanisms of its generation. 

Here, we theoretically analyze the excitation of waves of instability of the secondary 
flow on a swept wing in a boundary layer undergoing compression. The sources of generation 
are local flow discontinuities due to roughness or vibration of the surface, its heating or 
cooling, or the suction or injection of gas through the permeable surface. 

i. We will examine flow in the laminar boundary layer on a swept wing. An external load 
which is harmonic over time and which is localized on scales on the order of the length of 
an instability wave is applied to the surface of the fore part of the wing profile in the re- 
gion of intensive secondary flow. The intensity of the load is fairly low, and the perturba- 
tions are described by linear theory. The external load excites waves of instability in the 
secondary flow. It is necessary to determine the amplitudes of these waves. 

We introduce a coordinate system with its origin at the center of the loading section, 
as shown in Fig. i. The x axis is directed along the surface in the flow perpendicularly to 
the leading edge of the wing. The z axis is directed along the leading edge, while the y axis 
is directed along a normal to the wing surface. The coordinates x, y, and z are made dimen- 
sionless relative to the displacement thickness 6*, calculated from the profile of the x 
component of the velocity of the main flow U(y). It is assumed that the Reynolds number R L = 
UeL/~ e >> 1 (L is the chord of the wing, v is the kinematic viscosity, and the subscript e 
denotes a quantity on the external boundary of the boundary layer). Since the length of the 
instability wave is commensurate with the thickness of the boundary layer 6, the generation 
is localized on the scale ~ << L and we can ignore the effects of nonuniformity of the main 
flow with respect to x. 

For the perturbations, we introduce the vector function 

I 1 Ou aO Ow art av O0 aw Ou Ov O0 am 
~F ( x , y , z ~ t ) =  u, a--7-,v,p,O,--g-f,w, ay '  a---F, 0--7' a~'  o---F' a--f-' a , ' - ~ - ,  0-7-, 

where u, v, and w are perturbations of the x, y, and z components of velocity, referred to 
Ue; p is the perturbation of pressure, made dimensionless with respect to PeU~ (p is density); 
8 is the temperature perturbation, referred to the temperature of the main flow Te; t is the 
time in the units 6*/U e. 

We will examine a perturbation of fixed frequency ~, which we will represent in the form 
~(x, y, z, t) = Re[A(x, y, z) exp (--i~t)] (A. is the complex amplitude). 

We linearize the Navier-Stokes equations, discarding the terms due to nonuniformity of 
the main flow along x. We then perform a Fourier transformation with respect to time. Tills 
gives us a system of equations for the vector function 

a (L ~ OA) L oA = H I A + H  2 aA + H  aA 
a--7 -aK + ~ -~F  "-gT-~ ~ a~ ( 1 . 1 )  
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Fig. i 

(L0, L~, H~, H=, H 3 are matrices of the dimensions 16 • 16). Their elements depend on the 
main flow, the frequency ~, and R = Ue6*/v e. The external loading leads to inhomogeneous 
boundary conditions on the surface in the flow 

(A~, AaxA~AT) = ( ~ ,  r %, ~ ) ,  Y = 0 ( 1 . 2 )  

(~ are components of the vector function ~(x, Z): which describes the loading). 

It is assumed that the perturbations decay upflow and in the direction of the span of 
the wing. The perturbations may increase downflow with finite growth exponents. We have the 
boundary conditions 

IAI-+ 0, y - +  o%x,  z = const; x - + - - ~ ,  y, z = consV; ( 1 . 3 )  

z--+ ~ o o ,  y, X = CO~St. 

Within the framework of linear theory, problem (1.1)-(i.3)describes the excitation and de- 
velopment of perturbations in the vicinity of the section subjected to external loading. 

2. We seek the solution of problem (i.1)-(1.3) in the form of an expansion in a biortho- 
gonal system of eigenfunctions {A=~(y), B~o(y) } determined by the direct and conjugate prob- 
lems with homogeneous boundary conditions at y = 0 [8] 

d ! dAafi'~ dAaf~ -# ILo -~-] + L I ~ = HtA~z~ +'i~H2A~ ~ + i~HaA~, (2. i) 

A~.I___Aa[~,3=Aa~,~=Aa~,7=O,; y=0, [ A ~ [ < o o ,  y - w o o ;  

d ! *dB~zf3"~ dBaf~ *B - *B ' -H* ( 2 . 2 )   S/Lo - L ;  = H ,  - -  = ,  - -  

Beg,z = Bag,a = Balk6 = B=g,s = 0, y ----- 0, I B~,~I < oo, y - +  oo, 

where * denotes the transposed matrix with complex-conjugate elements; the superimposed bar 
denotes complex conjugation. 

The eigenfunctions A=.6(y) describe the amplitude of a wave of the form A=~ exp (~=x + 
i[~z- io~t). Equations (2.1) are equivalent to the Less-Lin system of equations normally used 
in numerical analyses of the stability of compressible three-dimensional boundary layers [3]. 
The following conditions of orthogonality are satisfied 

co 

<H2A=f~ , B~I~ > = A=v, <H= A, B> ~ (HaA, B) dy, 
0 

16 

(H~A, B)= ~ H~kAaBj. 
~,h=l 

Here, Aa~ is the Kronecker symbol if a or ~ belong to a discrete spectrum; Aa~ = 6(~ - ~) 
is a delta function if a and ~ belong to a continuous spectrum. 

Since the boundary layer on a swept wing is independent of z, the coefficients in Eqs. 
(i.I) are also independent of z. We will expand the amplitude of the perturbation into a 

Fourier integral over the wave numbers ~:A(x~ y~z)= ~ Q~(x, y)ei~Zd~. 
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In a certain section x = x 0 downflow of the loading section, the amplitude satisfies homo- 
geneous boundary conditions at y = 0 and the condition to boundedness at y + =. Thus, in the 
region x> x0, Q~ can be expanded into eigenfunctions {A~, B~} : 

Q~ (x, y) = ~ '  <H2Q ~ (x0, y), B~> Aa~ (y) exp [iu (x --  x0) ] ( 2 . 3 )  

( ,  d e n o t e s  summation o v e r  t h e  d i s c r e t e  s p e c t r u m  and i n t e g r a t i o n  o v e r  t h e  c o n t i n u o u s  s p e c :  

t r u m ) .  The a u t h o r s  o f  [9] p r o v e d  t h e  c o m p l e t e n e s s  o f  t h e  s y s t e m  o f  e i g e n f u n c t i o n s  f o r  two- 
d i m e n s i o n a l  p e r t u r b a t i o n s  in  a p l a n e - p a r a l l e l  bounda ry  l a y e r  o f  a c o m p r e s s i b l e  g a s .  Th i s  p r o o f  
i s  e a s i l y  g e n e r a l i z e d  t o  t h e  c a s e  o f  t h r e e - d i m e n s i o n a l  p e r t u r b a t i o n s  o f  t h e  form Q(x,  y)  exp 
( i ~ z )  (6 i s  a r e a l  q u a n t i t y )  f o r  t h e  bou n d a ry  l a y e r  on a swept  wing.  

Due t o  t h e  l i n e a r i t y  o f  t h e  p r o b l e m ,  we can a n a l y z e  t h e  e x c i t a t i o n  o f  e a c h  mode s e p a r a t e l y .  
We will restrict ourselves to examining waves of instability of the secondary flow. Charac- 
teristics of these wave solutions were studied in detail in [3-6]. For completeness of ex- 
position, we will enumerate their main properties. Instability of the secondary flow is due 
to the point of inflection in the profile of the velocity component normal to the external 
streamline. The instability is inviscid in character. Its maximum increments are realized 
at frequencies close to zero. The vector of group velocity is close in direction to the ve- 
locity of the external flow and makes an angle =90 ~ with the wave vector, i.e., the instabil- 
ity wave has a structure which is periodic with respect to the z axis, and it intensifies 
exponentially downflow. The determining parameters for secondary-flow instability are the 
Mach number Me, the angle ~e between the streamline of the external flow and the x axis (see 

Fig. i), the pressure-gradient parameter Ae = 2~dUe/d~/Ue, ~ = ~ 9eUe~e dx , the frequency ~, 

O 

the z component of the wave vector, and R. We will use the subscript CF to denote character- 
istics of secondary-flow instability. 

The coefficients in expansion (2.3) are determined as was done in [i0], by analysis of 
the excitation of Tollmin-Schlichting waves by local loading in a plane-parallel boundary layer. 
We will examine the regime of subcritical frequencies. In this case the perturbation Q~(x, y)-+ 
0 at x-+q-co, y=const. Expanding Q~ and ~ into Fourier integrals, we have 

Q~ = ~ A~ (y) e ~ da~, ~ = F n 
J o e  ~ m o o  

d (L ~ dAv I dAy 
- ~ .  ~ ]  + L1 ~ = H1A v + iavH2Av, 

(A~,~, A~,3, A,,5, A,,7) ---- (/1, f2, f3,. 14), Y = 0, [A~[ -~ 0, y -+ ~ .  

The Fourier component A~ describes a perturbation introduced into the boundary layer by a 
harmonic external load with the wave numbers ~v, 6- The following relation is satisfied 

(H2Ao, B:~)i(a~ --  a) + (A~, B~)v= 0 = 0. ( 2 . 5 )  

It follows from (2.4) and (2.5) that the coefficient in front of the eigenfunction of the in- 
stability wave is 

; (Av' BCF'~)U=~ exp (iO~vXo) dav. ( 2 . 6 )  t 
(H2Q[~ (xo, y), Bcr,r,> = - -  ~ (% -- a) 

To calculate the integral in (2.6), we choose the contour of integration in the complex plane 
~v, as shown in Fig. 2. Making the radius r approach infinity and considering that x 0 > 0, we 
find 

(H2Q~, Bov,~) = --(Av, BcF.~)y=o exp (iacpx~), ,,Z. 7) 
It is not hard to show that 

4 

s =-- - (Ao~ Bc~,~)~=o = - -  :E [lJ (~c~ ,  I~)Bc~,~,~j-~]~=o, 
j=~ ( 2 . 8 )  

where f(acr, ~) is a harmonic of the external load which is resonant with the instability 
wave. 
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It follows from (2.7) and (2.8) that the amplitude of the excited mode of secondary flow 
QcF,~ with the wave number ~ and the eigenvalue aCF = aCF(~, ~, R) has the form 

S ACF,~ exp (i~cFx). (2.9) QcF,~ = <H2AcE.8 ' BCF,~> 

Introduction of the multiplier (H~AcF.~,BcF.~> -I makes Eq. (2.9) invariant relative to~ the 
choice for normalization of the eigenfunctions. 

In the transition from subcritical to supercritical eigenfrequencies, the value of ~CF 
intersects the real axis in the direction of the dashed arrow in Fig. 2. In this case, the 
rule for circumvention of the pole ~v = ~CF is chosen in accordance with the postulate in [ii] 
requiring continuity of the solution in the transition past the critical frequency. The con- 
tour of integration passes below the pole, as shown by the dashed lines in Fig. 2, and there 
is no change in the result (2.9). It should be noted that the solution of problem (i.i)-~ 
(1.3) is not unique for supercritical frequencies. In this case, the eigenfunction, AcF,~ex p 
[i=cFx], with an arbitrary coefficient, can be added to the solution. To make the solution 
unique, it is necessary to examine the problem with a load which is harmonic with respect to 
time. This load is applied at the initial moment t = 0. We subsequently proceed to the limit 
t ~ =, as was done for Tollmin-Schlichting waves in [12]. Another method is to use the postu- 
late in [ii]. 

3. As was noted above, secondary-flow instability of zero frequency has a growth incre- 
ment which is close to maximal. Such steady-state instabilities may be excited on irregular- 
ities on the surface in the flow. Let the form of an irregularity be y(x, z) = a~(x, z), ~(x, z) 
=O(1) (a is the characteristic height of the irregularity, referred to 6*). It is assumed 
that the roughness lies at the bottom of the viscous sublayer and results in inhomogeneous:- 
boundary conditions A1 =--aU~(x, z), A a = A 5 = O, A 7 =--aW'w ~(x, z), y = 0 , where U~ , W~ 
are derivatives of the x and z components of the velocity of the main flow with respect to 
yaty=0. 

Using Eq. (2.9), we obtain the following for the maximum modulus of the perturbation of 
the x component of velocity in the excited secondary-flow instability 

qcF (x, z) = a ~ G r (aCE, ~) / (aCF, ~) exp (iaCFX + i~Z) d~, ( 3 . 1 )  

qcF = maxy [ Uc~ (x, y, z) [, 

' -  W'~ 
<H2AcF:~,BcF,~> 

Here, /(~cF, ~) is a resonance harmonic of the form of the irregularity ~ ; G r is the genera ~ 
tion coefficient, equal to the initial amplitude of an instability wave with the wave number 

excited on an irregularity with the resonance-harmonic amplitude af(~CF, 6) = i; qm = 
maxy [AcF,8,1 [ is themaximumof the modulus of the first component of the eigenvector function 
ACF.~(Y). The generation coefficient @ r is independent of the form of the roughness and the 
normalization of the eigenfunctions and is a universal characteristic of the efficiency of 
excitation of instability waves. 

Let the external load take the form of steady heating (or cooling) of a section of the 
surface in the flow. Then A I = A3 = A 7 = 0, A s = %0~(x, z), y = 0 (8 o is the characteristic 
heating temperature, referred to Te). The amplitude of the excited instability wave is deter- 
mined by Eq. (3,1) with the replacement of a~by 0 0 and G r by the generation coefficient GT: 

BCF,~.~ (0) ( 3 . 2 )  
GT  = - -  <H2AcF,~ ' BCF,~> am (aCF, ~)- 

I f  t h e  e x t e r n a l  l o a d  i s  a weak s u c t i o n  ( o r  i n j e c t i o n )  o f  gas  t h r o u g h  t h e  p e r m e a b l e  s u r , . :  
f a c e ,  t h e n  

A~ = As = A~ = O, As = vo ~(x, z), y = 0 ,  ( 3 . 3 )  

G~ = <H2AcF, g ' BCF, g> 

(v 0 is the characteristic rate of suction or injection, referred to Ue). 

We can use Eqs. (3.1)-(3.3) to calculate the generation coefficients for subsonic flow ve- 
locities. Flow in the boundary layer was calculated in a local similarity approximation. The 
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TABLE 1 

Ae R fS.10 Re(O~CF)'i0 Im(~cF)-ao~ I O ~ l . l o  ~ IGTI.10* I iG~l.lo 
I 

O,i 

0,5 

0,9 

514,2 
771,3 

1028,5 
i285,6 
128,6 
5t4,2 
899,9 

t285,6 
96,4 

5i4,2 
899,9 

t285,6 

3,44 
3,6i 
3,67 
3,69 
2,90 
3,12 
3,i0 
3,t2 
2,66 
2,77 
2,78 
2,8t 

--3,95 
--4,t4 
--4,2i 
--4,24 
--3,05 
--3,27 
--3,26 
--3,29 
--2,66 
--2,75 
--2,77 
--2,8t 

O,li 
--2,37 
--3,76 
--4,66 

2,t4 
--14,25 
--t7,09 
"t8,27 

0,69 
--i8,93 
--2t,31 
--22,33 

5,64 
4,43 
3,90 
3,60 

t3,7 
7,16 
6,28 
5,80 

14,2 
7,t4 
6,29 
5,92 

2,07 
t ,42 
t,13 
0,97 
5,92 
1,93 
1,39 
i,14 
6,39 
t,83 
1,34 
i,t4 

3,61 
3,72 
3,83 
3,93 
2,89 
3,3i 
3,55 
3,68 
2,55 
3,08 
3,28 
3,46 

eigenvalues and eigenfunctions ~cF, AoF,~, BcF, g were calculated by the orthogonalization meth- 
od with the use of the application package in [13]. Viscosity was determined from the Suther- 
land formula, the Prandtl number was 0.72, the stagnation temperature was 310 K, and the 
adiabatic exponent was 1.41. We examined the regimes: M e = 0.5, @e = 50~ Ae = 0.1-0.9. The 
Reynolds number was varied from the value associated with loss of stability to 1300. The wave 
numbers $ correspond roughly to the maximum growth increments. The results of the calcula- 
tions are shown in Table i. 

Figure 3 shows distributions IAcF,~.1(~)l and IAcF,~,7(~)! (curves 1 and 2) which are typical of 
secondary-flow instability waves and correspond to the moduli of the perturbations of the x 

z velocity components ;~=~ p/pedy is the Less-Dorodnitsyn variable. The eigenfunction and 

0 

was normalized with the condition ACe ~,2(0) = i. Calculations were performed for the param- 
eters of the main flow A e = 0.9, M e $'~.5~ @e = 50~ R = 1285.6 and the instability-wave Da- 
rameters m = 0, aCF = --0.281 -- i0.0223. Analysis of the vector field shows that the instabil- 
ity wave is a system of longitudinal vortices localized within the boundary layer and orien- 
ted roughly in the direction of the velocity vector on the external boundary of the boundary 
layer. 

To evaluate the efficiency of the above,examined excitation mechanism, we choose an ex- 
ternally loaded section in the form of a rectangle with the sides x--l~= ~/lacFl, z -- l~ = 
n/]~I. Let the loading be constant over the entire section, ~(x, z)= I, Ixl < ix/2, !zl < lj2; ~ = 
O, ]xl > Ix~2, [zl > lz/2 . Then ](ac;, ~) = 2/Ixacp~i , and the initial amplitude of the instab- 
ility wave with the wave number ~ will have the form 

2a 20o I Gr I, 2% 

It follows from the table that lacF~r ~-- I0 -x, IGrl ~ 10 -2, lGrl --~ 10 -a, IG~I ~ 3'10 -I . For 
the initial amplitude QCF,0 = 0.1%, we obtain a --~" 10 -2 , 00 --10 -I , u~ ___ I0 -~ . Thus, to ex- 
cite a secondary-flow instability wave with an initial amplitude of 0.1%, it is sufficient to 
have microroughness of the height mi0,26 * or weak suction/injection at the rate 10 -4 U e. Such 
excitations are almost unavoidable. Sources of these excitations may be roughness of the skin 
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of the wing, slits, joints, etc. As in the case of the generation of Tollmin-Schlichting waves 
[i0], local heating of the surface is less effective. 

We thank A. M. Tumin for his participation in fruitful discussions of the present study. 
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